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SUMMARY

Neuronal signals in the prefrontal cortex have been
reported to predict upcoming decisions. Such activ-
ity patterns are often coupled to perceptual cues indi-
cating correct choices or values of different options.
How does the prefrontal cortex signal future deci-
sions when no cues are present but when decisions
aremade based on internal valuations of past experi-
ences with stochastic outcomes? We trained rats to
perform a two-arm bandit-task, successfully adjust-
ing choices between certain-small or possible-big
rewards with changing long-term advantages. We
discovered specialized prefrontal neurons, whose
firing during the encounter of no-reward predicted
the subsequent choice of animals, even for unlikely
or uncertain decisions and several seconds before
choice execution. Optogenetic silencing of the pre-
limbic cortex exclusively timed to encounters of no
reward, provoked animals to excessive gambling for
large rewards. Firing of prefrontal neurons during
outcome evaluation signals subsequent choices
during gambling and is essential for dynamically ad-
justing decisions based on internal valuations.

INTRODUCTION

Discoveries of neuronal firing patterns reflecting economic and

subjective value (Padoa-Schioppa and Assad, 2006; Kable and

Glimcher, 2007), risk-taking (Ogawa et al., 2013), or reward

prediction (Schultz et al., 1997) in distinct synaptic circuits

(Friedman et al., 2015) have provided mechanisms and inspired

several models for value-based decision making (Rangel et al.,

2008; Glimcher and Fehr, 2014; Padoa-Schioppa, 2011; Sugrue

et al., 2005; Hunt and Hayden, 2017). In contrast to a standard

behavioral task design, many of our decisions are not guided
by external perceptual cues informing us about a correct or an

incorrect choice, and decisions are not often based on percep-

tually presented stimuli with a deterministic consequence. Regu-

larly, choices need to rely on experience-based inner valuations

of different options with a probabilistic outcome distribution.

Gambling tasks with changing reward contingencies serve as a

model in which flexible decision making relies on internal valua-

tions without external cue guidance and aims toward reward

maximization and individual satisfaction. During gambling, en-

counters of choice options under uncertainty often lead to seem-

ingly unpredictable decisions, and the neuronal mechanisms

driving such unguided decision-making based on the inner valu-

ation of probabilistic outcome remain poorly understood.

Neuronal signatures of economic choice have been reported

in the lateral orbitofrontal cortex (Padoa-Schioppa and Assad,

2006; Padoa-Schioppa, 2011). In rodents, recent evidence has

emerged that medial parts of the prefrontal cortex may be para-

mount (Gardner et al., 2017), but distinct neuronal underpinnings

are yet to emerge. A series of findings has identified the prelimbic

cortex as a key structure in value-guided decision making (Zeeb

et al., 2015; St Onge and Floresco, 2010; Balleine and Dickinson,

1998), which is in line with findings linking the medial prefrontal

cortex with the top-down cognitive control based on internal

valuations across species (Koechlin et al., 2003). The prelimbic

cortex has also been suggested in contribution to behavioral

flexibility, which enables adaptive control and allows sponta-

neous choices based on internal valuation (Dolan and Dayan,

2013; Kolling et al., 2014). During choices under risk, dopami-

nergic cells have been reported (Stauffer et al., 2014) to reflect

the utility function of decisions. We aimed to unravel neuronal

signals in the prelimbic cortex of rats that combine various rele-

vant signals and reflect a binary choice output during gambling.

For this purpose, we adopted a two-arm bandit-task design to

incite inherent valuation processes for decision optimization dur-

ing dynamically changing gambling conditions. We measured

and manipulated neuronal activity in the prelimbic cortex of

rats to uncover firing patterns, which, in the absence of percep-

tual cues or offers, signal upcoming decisions based on internal

valuation of stochastic past experiences.
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RESULTS

Rats Can Successfully Adjust Their Decisions to
Maximize Long-Term Amount of Reward during a
Gambling Task
Inspired by bandit tasks for humans, we trained rats to choose

freely and without cue guidance between a certain-small reward

on the ‘‘safe-arm’’ of a Y-maze or a possible-big reward on

the ‘‘gamble-arm’’ (Figure 1A). The likelihood of reward on the

gamble-arm was changed twice during a session, altering the

advantage between the two arms or allocating similar merit to

both options (Figures 1B and S1A). We observed that animals

were able to adjust their choices to maximize the long-term

amount of reward and follow the changes in reward contin-

gencies (Figures 1C, 1D, and S1B–S1E). Choice behavior of

animals adapted based on the diverse reward experiences

during individual behavioral sessions (Figures S1B and S1C).

Comparing the animals’ behavior to an optimal agent allowed

only a measure of performance but did not allow adequate

tracking of subjective values and goal preferences during indi-

vidual behavioral sessions (Table S1). Among several tested

behavioral models (Table S1), we applied a reinforcement-

learning (RL) model (Sul et al., 2010) to estimate subjective

goal values and predicted 80.4% (±2.7 SEM) of the animals’

choices. We refer to the modeled probability for a subsequent

choice of the gamble-arm as ‘‘choice evidence for gamble’’ (Fig-

ure 1B). Modeled choice evidence allowed a more refined repre-

sentation of subjective goal value changes during the task (Fig-

ures S1B and S1C). As expected, we observed fewer choices

for the gamble-arm during episodes of low choice evidence for

gamble (Figure 1E). During periods with ambiguous choice

evidence, rats adjusted their strategy more often and made

significantly more changes between the two arms (Figure 1F),

while running speed did not correlate with different levels of

choice evidence (Figures S1F and S1G).

Firing Patterns of Prelimbic Neurons and No-Reward
Activated Cells During Performance of the
Gambling Task
We performed tetrode recordings in four rats during task perfor-

mance and measured the activity of 1,006 neurons across 45

behavioral gambling sessions. A demixed principal-component

analysis (DPCA) (Kobak et al., 2016) and a multiple regression

analysis (Figure 2) revealed that neuronal firing in the prelimbic

cortex differentiates according to different task episodes, occur-

rence or absence of reward, and according to modeled choice

evidence. Strikingly, a major proportion of recorded neurons in

the prelimbic cortex significantly increased their firing during

the experience of no-reward at the gamble-arm. The firing of

these classified no-reward activated cells (n = 402) was signifi-

cantly correlated to the occurrence of no-reward during any

three consecutive time-bins during the reward episode (Fig-

ure 2B, right panel). Additionally, these cells changed their firing

according to choice evidence and exhibited higher firing rates

during trials with low- and ambiguous- compared to high-choice

evidence for gamble (Figures 3A–3D and S2A–S2C). This distinc-

tion in firing rate according to different levels of choice evidence

was restricted to the gamble-arm and was not observed during
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safe-arm choices, which were always rewarded (Figure 3B).

The increased firing rate during low and ambiguous choice evi-

dence for gamble, could not be explained by possible speed-

related changes and thus unlikely reflect possible motivational

biases (Figures S1F and S1G). No-reward-activated neurons

were similarly present across animals (�40%, Figure S2D); their

firing reflected current but not past reward information (Fig-

ure S2E) and allowed a correct prediction about reward occur-

rences on 90.97%±1.60% (mean%±SEM) of trials (Figure S2F).

Although the firing of some no-reward-activated neurons was

not modulated by choice evidence (Figures 3D and S2D), the ac-

tivity of most of these cells exhibited additional correlation with

choice evidence and arm/or chosen goal in a task-episode-

dependent manner (Figures 3C, 3D, and S2A–S2C), likely inte-

grating context, goal value, and reward as reported earlier

(Mante et al., 2013; Rigotti et al., 2013; Raposo et al., 2014).

No-Reward Activated Neurons Provide Limited
Accuracy in Future Choice Prediction
Observing an influence of primary task and decision variables on

the prelimbic neuronal activity during the gambling behavior, we

asked whether prelimbic firing patterns might be predictive for

future choices during task performance. We applied an elastic-

net regression as feature selector to identify the best predictors

and evaluated their power with a general linear prediction model.

Using firing rates of either all recorded prelimbic neurons or the

activity of no-reward activated cells only as input for the regres-

sion, the resulting models, on average, correctly predicted

78.1% ± 1.3% and 75% ± 1.3% (mean ± SEM), respectively,

of future choices across all behavioral conditions (Figures

S3A–S3C). In order to explore which neuronal signals might be

responsible for successful predictions, we focused on a key sit-

uation during gambling, when an animal chooses the gamble-

arm but does not receive a reward. What will the animal decide

to do in the next trial: continue gambling or play it safe? In this

situation, the animals choose the safe arm in the subsequent trial

with almost similar likelihood 45% ± 5% (mean ± SEM) as the

gamble-arm. This intriguing scenario allowed us to control for

goal-arm location and reward information as in all instances

the animal is located on the same goal arm and receives no

reward, while retaining high unpredictability about what choice

the animal will cast in the following trial. We observed that

changes in track trajectory, head direction (relative speed), and

heading (degrees), during the reward episode were independent

of the choice the animal will cast on the subsequent trial (see Fig-

ures S4A–S4C). We analyzed whether the firing of no-reward-

activated cells in such a scenario of non-rewarded gamble-arm

trials is indicative of future choice. During periods of high-choice

evidence for gamble, these cells fired with higher rates when the

animal will change its strategy and select the safe-arm in the sub-

sequent trial, compared to no-reward encounters, when the an-

imal will decide to continue gambling on the next trial (Figure 4A).

Indeed, no-reward activated cells predict future choices under

such conditions and provided more predictive information

toward a change in strategy than the other recorded cells (Fig-

ures 4B–4D). The accuracy of the prediction increased with

increasing number of co-recorded cells (r = 0.374, p = 0.023).

However, during periods of ambiguous choice evidence for



Figure 1. Behavioral Analysis for the Gambling Task

(A) Running on a Y-maze, rats choose between a small and always-available or a big reward given only with a 12%, 25%, or 75% probability.

(B) For an individual session, choice evidence for going to the gamble-arm was calculated with a reinforcement learning model and classified as low (purple),

ambiguous (turquoise), or high (blue). Animals had to explore both arms in forced trials at the beginning of each block of trials with a defined reward probability on

the gamble-arm. Dotted line: expected value for the gamble arm based on reward occurrence. Ticks indicate observed choice for each trial.

(C) Each animal (R#1–R#4) was able tomaximize reward (see also Figure S1A) according to reward occurrence on the gamble arm (blue curve: logistic fit function;

gray: only Gamble-arm choices above an expected gamble arm reward value [EV] of 1 are optimal).

(D) Increasing reward probability leads to increasedpreference for the gamble-arm (one-way ANOVAF2 = 50.529, p < 0.001; n12,5 = 45, n25 = 43, n75 = 45 sessions).

(E) Modeled choice evidence reflects behavior of animals (one-way ANOVA: F2 = 178.703, p < 0.001).

(F) Changes in arm choice were most abundant during ambiguous choice evidence (one-way ANOVA: F2 = 23.511, p < 0.001).

Data as mean ± SEM, post hoc multiple comparison Student-Newman-Keuls method *p < 0.05; ***p < 0.001, namb = 45, nlow = 39, nhigh = 45 sessions for (D)

and (E), 4 rats for (C), (E), and (F).
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Figure 2. Modulation of Prelimbic Neuronal

Activity by Reward, Choice Evidence, and

Task Episode

(A) Demixed principal-component analysis (PCA)

revealsmajor contributors of firing rate variance on

gamble-arm trials. Time and episode modulation

contributes most significantly to the firing rate

variances followed by choice evidence and reward

as denoted in the pie chart segments. The first 15

principal components of the demixed PCA and its

contributing variables for gamble-arm firing rate

modulation are depicted in the bar graph (left top

panel). The first two component contributions are

cut for comparison reasons. The upper-right tri-

angle of the top right panel depicts dot products

between all pairs of the first 15 demixed principal

axes. Stars denote significantly non-orthogonal

principal components; note components 5 and 4

indicating an interaction of choice evidence- and

reward omission-related neuronal activity. Bottom

left triangle shows correlations between all pairs of

the first 15 principal components. A selection of

the main principal components indicates time-

dependent reward modulation (C. #5 and #6),

choice evidence modulation (C. #4 and #8), and

task episode modulation (C. #1 and #3). Black

lines indicate significant periods.

(B) Multiple regression analysis indicates correla-

tions of reward occurrence, modeled choice

evidence, and spatial arm location with firing of

prelimbic neurons along trial episodes (left panel).

The firing of large subsets of prelimbic neurons

is correlated with reward omission or reward

occurrence in a time-dependent manner (right

panel).

Note: to be classified as a no-reward activated

neuron, firing rate had to depict significant corre-

lation in three (out of 9) consecutive time bins

during the reward episode. Dark gray depicts

chance level.
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gamble (with multiple choice fluctuations), no-reward activated

cells, on average, did not significantly differentiate their firing

rate according to future choices in upcoming trials (Figure 4A,

right panel). Thus, the predictive power of no-reward activated

cells appears at least partly linked to the previously described

correlation of firing rate with choice evidence. Therefore, the

firing of no-reward activated cells, as a population, may not allow

a reliable prediction of subsequent trial choices on a trial-by-trial

basis or during periods with ambiguous choice evidence.
4 Neuron 101, 1–13, January 2, 2019
A Differentiating Firing of Choice
Predicting Cells during the
Encounter of No-Reward Indicates
the Choice of the Animal in the
Subsequent Trial
To adjust for choice evidence-modulated

firing of no-reward activated cells, we

subtracted the mean firing rate of no-

reward activated cells during trial t�1

(excluding the reward episode) from the

firing rate during reward episode of trial
t. Using these relative firing rate values as input predictor for

future choice in trial t+1, the elastic-net regression selected a

population of cells, whose actually-recorded firing patterns ex-

hibited stable high predictive power for future choices. Timed

to the encounter of no-reward on the gamble-arm, these cells

significantly differentiate their recorded firing rate according to

the subsequent choice of the animal (Figures 5A–5D, S5A, and

S5B). Even during periods of ambiguous choice evidence or

for unlikely upcoming choices (safe-arm choices during periods



Figure 3. Firing of No-reward Activated

Cells Reflects Reward Occurrence and

Choice Evidence

(A) Firing rate during the reward episode of two

no-reward activated neurons increases during

unrewarded gamble trials (blue) and depends on

choice evidence. Red: rewarded gamble-arm

trials.

(B) Firing of no-reward activated cells (n = 402)

according to reward occurrence, modeled choice

evidence, and arm choices. Note an increased

firing during non-rewarded trials and during pe-

riods of ambiguous and low choice evidence for

gambles exclusively on the gamble-arm.

(C) Normalized firing of no-reward activated neu-

rons for unrewarded (left, sorted for peak firing)

and rewarded (right) gamble-arm trials. Note, cells

with peak firing during but also outside of the

reward episode differentiate firing during the

reward episode according to reward occurrence

(see Figure S2B for individual examples; for visu-

alization purposes, maxima and minima outside

the color range are omitted).

(D) Correlations between firing rate and choice

evidence during four indicated task episodes

(unrewarded trials only, 402 neurons). Bottom:

large fractions of no-reward activated cells exhibit

significantly correlated firing (unrewarded trials)

with choice evidence for gamble arm for at least

one trial episode (run1, run2, reward, and/or

intertrial episode, n = 402).
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of high choice evidence for gambling), these ‘‘choice-predicting

cells’’ exhibited significantly higher firing during the reward

episode when the animal would change its strategy in the next

trial and select the safe option as opposed to choosing a further

gamble subsequently (Figures 5A, middle panel, 5B, 5C, and

S5B). We observed that this firing differentiation was indepen-

dent from reward, location, motoric confounds, different levels

of value, choice evidence, and reward prediction error (Figures

S4A–S4C and S5F–S5H). Nevertheless, many of the latter vari-

ables present trial-to-trial variations, which could still account

for firing rate variances in the investigated trial scenarios. Thus,

we used the residuals of a multivariate regression (controlling
against reward prediction error [RPE],

action value for choosing the gamble-

arm, trajectory changes, head-directional

changes and choice evidence) instead of

the firing rate as input to an elastic net

regression analysis. The firing of the

selected cells differentiated their firing

according to future choice (Figures 5D

and S5K), confirming that future choice

prediction of these cells is independent

of reward prediction error, action value

of the gamble-arm, trajectory changes,

head-directional changes, and choice

evidence. Furthermore, the identification

of choice-predictive signals remained

independent of different reinforcement
models used (alternative RLmodel with similar predictive power;

Figure S5I) and independent of reinforcement model parameters

during ambiguous choice situations when expected reward

values were similar on both arms (Figure S5F) or probability of

gamble is close to 0.5 (Figure S5G).

If neurons indeed present a firing rate differentiation during

reward evaluation dependent of future choice but independent

of changes in goal value and reward prediction error, then they

should continue to do so independent of prior experiences. First,

we confirmed that the outcome during the trial before the non-re-

warded gamble trial has no significant impact on the firing rate

differentiation of choice-predictive cells (Figure S5C). Then, we
Neuron 101, 1–13, January 2, 2019 5



Figure 4. Predictions of Future Choices

Based on the Firing of No-Reward-Acti-

vated Neurons

(A) During non-rewarded gamble-arm trials, no-

reward activated cells differentiate their average

firing according to the subsequent choices of the

animal for trialswith highbut not ambiguous choice

evidence for gamble. Note: the difference in ab-

solute firing rate between left and right panels

contributes to prediction power. Wilcoxon signed

rank test, alpha = 0.00167 (bonferroni corrected);

left: reward episode: Z = �2.864, p = 0.0261; all

other episodes n.s; n = 308; right: run1 episode:

Z = �5.533, p < 0.0001; Reward episode: Z =

�3.245, p = 0.0012; all other episodes n.s; n = 339.

(B) Receiver-operating statistics of successful

predictions of future choices during non-rewarded

gamble trials based on the firing of no-reward

activated cells (mean curve ± SEM). Inlet: pre-

diction accuracy per session mean = 74.2%;

median = 73.3%.

(C) Prediction accuracy of the model increases

with higher numbers of simultaneously recorded

no-reward-activated cells.

(D) No-reward-activated cells (blue, nnor = 77)

better predict the change of choice compared to

other recorded cells (red, nother = 74) as indicated

by their elastic-net coefficients after non-re-

warded gamble trials. Left panel: two sample

Kolmogorov-Smirnov test; right panel: Mann-

Whitney U test: U = 1,676.000, p < 0.001; (A–C):

n = 37 sessions).
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analyzed recurring choice scenarios during four consecutive tri-

als, with defined outcomes during the first three trials, and the

firing rate of choice-predicting cells was analyzed dependent

on what choice the animal will cast on the fourth trial (Figures

5E, S5D, and S5E). Irrespective of whether the animal has expe-

rienced none or repeated reward omissions in the two previous

trials, the choice-predicting cells always differentiated their firing

in the third trial according to animal’s choice in the fourth trial.

This confirms that previous outcomes and choices have no influ-

ence on the choice-predictive signal, suggesting its indepen-

dence from expectancy and surprise. Within this population of

choice-predicting cells, the predictive increase in firing is tempo-

rally restricted to the reward episode and does not persist signif-

icantly earlier or later in the non-rewarded trial (Figures S5D

and S5E).

In contrast to the reinforcement learning model, which is

based on behavioral parameters only, a prediction model based

on the firing of these choice-predicting cells achieved accurate

persistent forecasts of future choices even during ambiguous
6 Neuron 101, 1–13, January 2, 2019
choice evidence (Figure 5F). In fact,

the predictive power of the no-reward

activated cell population benefited from

the population of choice-predicting cells

(Figure S5L).

Next, we tested whether the predictive

neuronal activity of those choice-predict-

ing cells might also allow inference about
future choice when the animal consumes a small reward on the

safe arm. However, these cells did not exhibit a differentiating

firing pattern for future choice during safe arm trials (Figure 5G).

Using an elastic-net regression, we identified a distinct popula-

tion of 88 cells, which significantly differentiated their firing rate

during the reward episode of safe-arm trials depending on the

choice of the animal in the following trial during ambiguous-

and low-choice-evidence for gambling (Figure 6A). These neu-

rons did not carry predictive power for upcoming choices during

non-rewarded gamble-arm trials (Figure 6B). Thus, distinct sets

of neurons in the prelimbic cortex provide a reliable and predic-

tive firing-rate-based signal, indicating the upcoming choice on

the following trial in an arm-specific manner. This aligns with

the observation that neurons in our task design present strong

arm-identity-dependent information (Figures S6A and S6B).

When gamble and safe arm identity was switched halfway

through the task (without physically moving the goal arms), neu-

rons, in general, did not respond to changes in spatial location of

the goal arms but maintained their firing according to gamble or



Figure 5. Prediction of Future Decisions by the Firing Rate of Choice-Predicting Cells during Evaluation of Negative Outcomes

(A) At the time of no-reward, firing of choice-predicting cells indicates rat’s choice in the next trial even during ambiguous choice evidence, before unlikely choices

for the safe arm during high choice evidence for gambling, or for unlikely choices for the gamble arm during low choice evidence for gamble. Neurons significantly

increase firing during the occurrence of no-reward on gamble-arm trials before the animal will change its strategy to the safe-arm in the next trial compared to a

subsequent gamble-arm choice. (Signed rank test, adj. for multiple comparisons, ***p < 0.0001; left panel: Z =�5.9879, right panel: Z =�5.0817). Note that only

unrewarded gamble-arm trials are considered here.

(B) Firing of a choice-predicting cell during reward episodes across 48 consecutive trials with mostly ambiguous choice evidence. Gold and black ticks indicate

no-reward occurrence on the gamble-arm with a safe-arm or gamble-arm choice in the next trial, respectively.

(C) Different visualization of a choice-predicting cell across all non-rewarded gamble arm-trials (see Figures S5A and S5B for more examples).

(D) A multivariate regression of the firing rate of choice-predicting cells against variance changes of major task variables (choice-evidence, reward prediction

error, head-direction, movement, and action value of the gamble arm) was performed. The resulting residuals were subjected to a lasso regression analysis.

The firing rate of the selected cells (shown here) maintains a significant difference (p = 1.83e�4; n = 20 sessions) for distinct future choices, indicating their

independence from these task variables.

(legend continued on next page)
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Figure 6. During the Encounter of Reward

on the Safe Arm, the Firing of Another Sub-

set of Prelimbic Neurons Indicates the Up-

coming Choice of the Animal

(A) Elastic-net regression identified 88 cells which

significantly differentiate their firing rate during

the reward episode of safe-arm trials depending

on the choice of the animal in the following trial.

Low-choice evidence: Z = �5.7220, ***p < 0.001,

ambiguous choice evidence: Z = �5.0456,

***p < 0.001; n = 81 cells (left) and 86 cells (right)

alpha at 0.00166 (Bonferroni corrected).

(B) During unrewarded gamble arm trials, these

neurons did not differentiate in their firing for

distinct future choices (left panel: choice ep.

Z =�2.6146, p = 0.0089, reward ep.: Z =�0.6321,

p = 0.527; n.s. n = 81, right panel: reward ep.:

Z = �1.2040, p = 0.2286, n = 79).
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safe arm identity (Figure S7A–S7F). This further confirms that

firing of prelimbic neurons was related more to task and cogni-

tive content rather than to spatial or motoric parameters.

Inactivation of Prelimbic Neurons, Exclusively Timed to
the Experience of No-Reward, Increases Gambling
Behavior
As prelimbic firing patterns during the occurrence of no-reward

are predictive for subsequent choices, we tested whether opto-

genetic silencing of the prelimbic cortex, exclusively timed to no-

reward encounters, impeded optimal decision making. We used

a novel viral approach to express channelrhodopsin2 exclusively

in GABAergic neurons (Dimidschstein et al., 2016) of the prelim-

bic cortex (Figures 7A and S8K). Shining blue light via optic fibers

into the prelimbic cortex for 1 ms at 66 Hz activated putative in-

terneurons and inhibited the activity of 90% of prelimbic neurons

(Figure 7B). Such bilateral and spatially restricted optogenetic

silencing (Figures S8A–S8D andS8K) of the prelimbic cortex dur-

ing task performance and timed only to no-reward encounters

during gamble trials impaired the performance of rats (Figures

7C and 7D). Rats persisted in choosing the gamble-arm even

during highly unfavorable reward contingencies compared to
(E) Predictive firing rate differentiation was not influenced by differences in choice and outcome of the two p

time variables significant; left: p = 0.002, middle: p = 4.07e�4 right: p = 0.015; 1st and 2nd trial comparisons all

Information and Figures S5D and S5E).

(F) A prediction model based on the firing of choice-predicting cells maintains good performance even during

n = 402; GLM input: n = 151). Dotted line represents chance level.

(G) On the safe arm, the firing of these choice-predicting cells does not indicate the upcoming choice in

episodes n.s.).
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optimal choice selection with control

stimulations during the run1 episode,

during the reward episode, of rewarded-

gamble or safe-arm trials, or without stim-

ulation (Figures 7E–7H). The significantly

increased number of gambles for prelim-

bic silencing during no-reward resulted in

an increased number of disadvantageous

decisions as animals continued to
gamble for big rewards after non-rewarded trials even

in situations when the evidence would indicate the opposite (Fig-

ures 7E–7G and S8E). This alteration in choice behavior resulted

in fewer arm changes (Figure S8F) and was reflected in parame-

ters of the expected value and reinforcement learning model

(Figures S8G and S8H). The increased tendency to take riskier

choicesmight not result from reward-inducing effects of optoge-

netic interventions as further control experiments show that an-

imals do not prefer locations where such optogenetic stimula-

tions occur (Figures S8I and S8J). Thus, the firing of prelimbic

neurons during no-reward encounters is required for adjusting

decisions based on negative feedback.

DISCUSSION

Our adapted framework of a two-arm bandit-task required ani-

mals to explore and integrate probabilistic reward outcomes

and, accordingly, adapt policy selection to strive toward reward

maximization. During this task, animals often exhibited volatile

choice behavior, and the experience of a negative outcome on

the gamblearmpresented the animal regularlywith anambiguous

decision scenario on whether to choose again the gamble arm or
receding trials (two-way RM ANOVA, all group and

n.s., mean ± standard deviation; see Supplemental

ambiguous choice evidence (0.5) (elastic-net input:

the next trial (n = 84; same statistics as in A, all



Figure 7. Inactivation of Prelimbic Neurons during No-Reward Increases Disadvantageous Gambling Arm Choices

(A) Viral expression of channelrhodopsin2 in somata, axon terminals (arrowheads), and dendrites (arrows) of prelimbic GABAergic neurons. Scale bar, 20 mm.

(B) Optogenetic activation of a putative GABAergic interneuron (#3 from bottom) and inhibition of putative excitatory principal cells with a 1-ms-long, 66 Hz

stimulation protocol.

(C) Compared to control, bilateral optogenetic silencing of the prelimbic cortex, exclusively timed to the occurrence of no-reward during gamble-arm trials,

increased gamble-arm choices when safe-arm choices would be favorable (first block) and after an unannounced decrease in reward probability on the gamble

arm (arrow).

(legend continued on next page)
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the safe arm in the next trial. Taking advantage of this behavioral

scenario, we discovered neuronal firing activity in the prelimbic

cortex, which informs differentially about future choices of the an-

imal in economic decision making. We discovered a specialized

subset of neurons, whose firing patterns during the evaluation of

negative outcome signals choice in the subsequent trial even for

unlikely choices and more than 5 s before this decision is

executed. Optogenetic inhibition of prelimbic activity, exclusively

timed to the encounter of no-reward, resulted in an increased

number of gambles and confirmed the importance of the underly-

ing prelimbic neuronal activity for optimal decisionmaking. These

results suggest reliable reflection of intrinsic evaluation processes

of negative outcomes by prelimbic neurons signaling future

choice. These signals arewell suited for optimizing action adapta-

tions, in particular during conflicting choice situations.

Activity of choice-predictive neurons, whose firing rate in-

creases during reward omissions and indicate future choice,

cannot be attributed to classic RPE signals (Schultz et al.,

1997) and/or surprise signals (Hayden et al., 2011). During non-

rewarded gamble arm trials (outcome is always worse than ex-

pected, but negative RPE differentiates in weight), choice-pre-

dictive firing patterns remain stable during either low or high

levels of negative RPE (see Figure S5H) and during trial-by-trial

variations of RPE (see Figure 5D). Different levels of risk (McCoy

and Platt, 2005) or the amount of uncertainty in choice outcomes

(Kepecs et al., 2008) do not account for the observed choice-

predictive firing either (see Figures 5A, 5D, S5F, S5I, and S5J). In-

dependent of estimated subjective (e.g., action values, choice

evidence; Tsutsui et al., 2016; Figure 5D) or objective task pa-

rameters (e.g., probability of reward; Figure S5G), the choice-

predictive firing signal remains across different scenarios of

past trial history (Figures 5E and S5C). Major motoric differences

in behavior, which are correlated with neuronal firing rates in the

medial prefrontal cortex (Lindsay et al., 2018), can also be

excluded as confounding factors (Figures 5D, S4, and S5K).

The predictive firing-rate increase of choice-predicting cells

precedes an upcoming change to the safe arm on the next trial

by several seconds and is highly time restricted to the encounter

of no-reward. Thus, they contrast with working-memory signals

observed in the prelimbic cortex in tasks where animals are

required to hold goal relevant cue information in memory (Fuji-

sawa et al., 2008). There is no evidence that choice-predicting

cells in the prelimbic cortex remain informative for subsequent

choices for prolonged periods lasting into the next trial (see Fig-

ure S5E). Furthermore, the temporal span of at least 5–6 s be-

tween firing rate differentiation and decision manifestation and

the resulting mix of motoric behaviors during those time win-

dows (transfer, waiting time, and run initiation) makes it highly

unlikely that the signal corresponds to preparatory pre-action

or pre-motoric signals (Hare et al., 2011; Svoboda and Li, 2018).
(D–G) Inactivation of prelimbic cortex, timed to the experience of no-reward (N

p < 0.001). Ctr, no stimulation; R1, stimulation during run1 episode; RR, stimula

reward episode on the safe arm. Compared to controls a persistent increase in (F)

(F4 = 6.940, p < 0.001) results in (G) higher number of disadvantageous actions w

(H) Optogenetic inactivation during reward experience on gamble (RR) or safe

performance significantly. (E–G: data asmean ± SEM, ncontrol = 22, nnor = 17, nR1 =

test, *p < 0.05, **p < 0.01, ***p < 0.001; data from 4–7 rats, see supplementary in
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Future choice prediction has been reported for a cohort of

neurons in the anterior cingulate cortex (Ito et al., 2015). The pre-

dictive firing rate of these cingulate neurons peaked just before

the execution of the decision of which goal arm to choose.

This would be comparable to the run1 episode in our task, sug-

gesting different signals for choice execution in cingulate

cortices and choice-predictive signals for the subsequent trial

in prelimbic cortices described here during reward evaluation.

Decisions in our task design mainly reflect changes in internal

goal valuations—they are not associated with manipulations of

external perceptual and sensory cues—informing about optimal

choice as in cue-dependent and perceptual-decision tasks

(Kim and Shadlen, 1999; Matsumoto et al., 2003). Similarly,

seminal work from Padoa-Schioppa and colleagues describe

neuronal responses in the primate lateral OFC signaling the

upcoming ‘‘chosen juice’’ following stimulus presentation (Pa-

doa-Schioppa and Assad, 2006). The cue presented during

each trial distinctively informed the animals about goods and

outcome. In light of our data, it might be interesting to explore

how those neurons in OFC of monkeys fire when subjective

good values are presented in an almost equally matchedmanner

and with a stochastic outcome distribution.

Neuronal activity patterns of choice-predicting cells are some-

what reminiscent of cells observed in the posterior cingulate cor-

tex and cingulate motor areas (Hayden et al., 2008; Shima and

Tanji, 1998) in primates. These reported neurons increased firing

following reward, indicative of shifts in goal choice for upcoming

trials. In the case of the posterior cingulate cortex (Hayden et al.,

2008), neurons increased their firing independent of the direction

of subsequent choice changes, which contrasts with our findings

in the prelimbic cortex. Despite differences in task design and

species, it will be interesting to understand synaptic interactions

and information flow between (and within) the different areas

involved in value-guided decision making. Downstream motoric

structures are possible candidates to initiate behavioral re-

sponses (Kim and Shadlen, 1999; Matsumoto et al., 2003; Kerns

et al., 2004; Svoboda and Li, 2018; Barack et al., 2017). The pri-

mate cingulate cortex (Pribram et al., 1962) has been linked to er-

ror, reward- and value-based decision-making (Rushworth et al.,

2011), andconflictmanagement (Mansouri et al., 2009) for optimal

choice (Kennerley et al., 2006; Botvinick et al., 2004). The difficult

question of species homology for prefrontal cortex highlights the

importance of discovering distinct neuronal activity patterns to

establish better predictive validity for why failing or shifting reward

integration mechanisms result in detrimental decision making

across a range of psychiatric conditions (Fujimoto et al., 2017).

The activity of choice-predicting cells suggests that the

prelimbic cortex is crucial beyond goal value comparisons for

future choice (Sul et al., 2010; McCoy and Platt, 2005) and might

contribute to executive signals for optimized decision making.
or), increased number of gambles (D) compared to controls (E: F4 = 8.403,

tion during reward experience on the gamble arm; SafeR, stimulation during

behavioral choice of gambles following earlier non-rewarded gamble-arm trials

hen evidence for the safe arm was high (EV < 1; F4 = 7.177, p < 0.001).

-arm trials (SafeR) or during the Run1 episode on any trial (R1) did not alter

11, nRew = 10, nSafeR = 9; one-way ANOVA, post hocmultiple comparison Tukey

formation and Figure S8)
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Inactivation of neuronal firing, precisely timed to negative

outcome, impeded behavioral performance in agreement with

lesions or inactivation studies of the prelimbic cortex (Birrell

and Brown, 2000; Marquis et al., 2007), indicating the direct

involvement of the discovered firing patterns in value-based de-

cision making. Our optogenetic perturbations provide evidence

that animals escalate disadvantageous risk-seeking behavior

based on a failure to adapt their decisions adequately following

a non-rewarded gamble arm trial (Figures 7 and S8). We cannot

attribute the behavioral changes solely to the inactivation of

choice-predicting cells as a range of other neurons depict

increased firing during non-rewarded trials. But the failure to

adequately integrate and adapt to negative reinforcement for

optimizing economic decisions follows observations on the

importance of the prelimbic cortex in strategy, rule, and set-shift-

ing tasks (Tervo et al., 2014; Durstewitz et al., 2010).

Choice-predicting cells increase their firing during negative

outcome on the gamble arm only when the animal will go to the

safe arm in the subsequent trial. Thus, they do not just signal

negative andunsatisfactory outcomebutmuchmoreact as a sta-

ble indicatorwhen an imminent choice adaptation is favored. This

presents a signal that provides a potent driver of behavioral

change during reward evaluation independent of choice evi-

dence and goal value. The increase in firing rate might influence

goal value updating in interconnected networks to guide choice

to an alternate goal in the future. This is a signal reminiscent of

‘‘regret,’’ a long-standing concept of decision-making in eco-

nomics (Bell, 1982; Loomes and Sudgen, 1982). Although regret

has already been linked to dorso-medial and dorsolateral pre-

frontal cortex (PFC) in humans (Chua et al., 2009), a neuronal

mechanism has not yet been identified. Regret, in contrast to

disappointment, carries self-blame about one’s choice and

thus a stronger negative affective reaction to the outcome of

the agent’s choice. A better choice could have beenmade,which

potentially carries a more direct effect on subsequent choices.

Regret can only be experienced once the agents either can infer

the likely outcome of alternative options or is informed about the

outcome of the not-taken alternative. Our task design fulfills this

requirement as, during the reward episode of non-rewarded

gamble-arm trials, the animal can infer that itwould have received

a small reward on the safe-arm. Prelimbic regret-based signals

may link reciprocal OFC and ventral striatal signals (Steiner and

Redish, 2014) and potentially drive or reinforce decisions con-

trary to value but in favor of utility and complement utility-based

decision processes specifically during decision making under

uncertainty (Bell, 1982; Loomes and Sudgen, 1982).

In conclusion, the firing patterns of choice-predicting cells pre-

sent an intrinsic evaluation process of negative outcomes that

signal future choice and provide a neuronal framework for under-

standing individual decisionsduring economic choice. These sig-

nals’ apparent independence from value representations and

reward prediction error signals provides a nuanced view on

neuronal correlates and models of decision-making processes.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All data presented was obtained from 12 Long-Evans male rats (320-440 g 3 to 4 months at the time of surgery, Charles River

Laboratories). Once surgeries were performed animals were housed individually in Plexiglas cages (42 3 27 3 30 cm). Rats were

housed under a 12h light/12h dark cycle and all experiments occurred in the light phase. Until rats had recovered from surgeries,

animals had ad libitum access to food. During behavioral experimental periods, rats received restricted amounts of food to reach

85% of the preoperative weight. They always had ad libitum access to water. All experimental procedures were performed under

an approved license of the Austrian Ministry of Science and the Ethical Committee of the Medical University of Vienna.

METHOD DETAILS

Surgeries: Microdrive implantation, Virus injection and optical fiber implantation
Rats were anesthetized with a mix of oxygen and isoflurane (induction 5%, maintenance 2%). Animals were shaved and fixed via ear

bars on a stereotaxic frame (Narishige). Body temperature was monitored throughout the surgery and stabilized via a heating pad.

Local (xylocaine� 2%) and systemic analgesics (Metacam� 2mg/ml, 0.5ml/kg) were applied. Vita-Pos� was applied to protect the

cornea and iodine solution was used to disinfect the surgery site. The skull and bregma were exposed and six stainless steel screws

were anchored into the skull. In case of Microdrive implantation, the two posterior screws above the cerebellum served as ground

and reference. Stereotaxic coordinates (Paxinos and Watson, 2007) are detailed in the Table S2.

Craniotomieswereperformedat the respective coordinates, theduramaterwas removed and saline solution applied to avoid surface

oedemas.Toavoiddehydrationof theanimal, every twohoursRinger’ssolution (10ml/kg)wasadministeredsubcutaneously. In thecase

of freely-moving electrophysiological recordings, animals were implanted with custom-made micro-drives (Miba Machine Shop, IST

Austria) containing 15 independently moveable tetrodesmade of four twisted tungsten micro-wires (12.7 mm inner diameter, California

FineWireCompany). To reduce impedance, tetrode tipswere gold-plated to reach 100 - 500kU. Once thewires of themicro-drivewere

lowered to the respective sites, paraffin wax was applied around the guide cannulas to protect the open brain and dura. In the case of

virus injections and optical fiber implantation a recombinant AAV2/1-mDlx-ChR2 (Dimidschstein et al., 2016) (@ 1.1 10E+9 viral
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genomes/ul) was introduced targeting GABAergic neurons. The virus solution was loaded into a pulled borosilicate glass capillary and

pressure-injected into the mPFCwith a Picospritzer III� (Parker Hannifin Corporation). About 600-800 nL of virus solution was injected

over 10 min/track along two tracks for each hemisphere. Thereafter an optic fiber was lowered into both hemispheres in-between and

slightly above the respective virus injection tracks.

In all experimental cases, the constructs were cemented to the skull and screws, with bone cement (Refobacin�), and if necessary

sutures were applied. Animals were given post-operative analgesia (Dipidolor� 60mg diluted per 500mL drinking water) and at least

7 days of recovery time. Once animals recovered fully after a minimum of 7 days, behavioral training started.

Behavioral Paradigm
All eight rats were trained on the gambling task and required on averaged 3 weeks of training to successfully integrate reward prob-

abilities andmagnitudes to optimize behavioral choices throughout the task. The wooden Y-maze was 55cm in height and the size of

each armwas 80 cm x 11 cm. Themazewas centrally placed in a darkened tent-like area. Animals were first habituated for three days

to the experimenter, the room, and the baited maze. During the first phase of the behavioral training, animals received the same

reward (23 20mg, TestDiet) on the end of both goal arms with a high reward probability (90%) via automated pellet feeders (Camden

Instruments Ltd). Once rats successfully ran toward the goal arms and were used to being manually placed on the home arm, dif-

ferential reward probabilities for the gamble-arm were introduced. Here, as in the final version of the task, animals had to differentiate

between a safe-arm, where they would receive always one 20mg reward, and a gamble-arm. On this gamble-arm, reward probability

significantly changed between three blocks within one daily session. One block centered around 12.5% reward probability and thus

favored safe-arm choices. The gamble-arm should be favored by the animals during the block where the animal receives 4 pellets of

20mg around 75%of the times. The third block left the rat in a more ambiguous state as the reward probability centered around 25%

indicating no clear preferable choice between the two arms. To help animals estimate reward probabilities 8 forced trials per goal arm

accompanied probability changes. The path to the opposite starting arm was prevented by a plastic pot in forced trials. This was

followed by 34 free-choice trials per block, where animals could freely choose between the two arms. In order to avoid arm biases

or temporal learning patterns, gamble-arm and safe-arm, as well as block order, were randomly interchanged between days and rats

(during training and testing). Additionally, to avoid pattern learning and repetitive behavioral choice-patterns, we regularly skipped

forced-trial segments and thus provided also non-guided reward probability changes on the gamble-arm. Thus animals could not

solely rely on reward outcomes during forced trials for an optimal choice strategy but had to actively track and integrate reward out-

comes across the free-choice trials for reward maximization. The resulting choice adaptations in Figure 1E indicate a high degree of

feedback integration during free-choice trials across all task segments. Once learned, a door was introduced at the beginning of the

trial, which required the animals to wait for two seconds, to minimize repetitive behavioral patterns. Before recording started, animals

had to distinctly favor the optimal arms in the two respective blocks and perform within all three blocks on three consecutive days.

During electrophysiological recordings, the animal’s position was tracked with either one or three (n = 20 sessions) LEDs of different

colors detected at 20 frames per second by an overhead video camera (Sony). In all other experiments, the animal’s position was

tracked with only one LED. All behavioral experiments were performed in the same room and within the same environment. The

maze was cleaned with an odour-free solution after each session for each animal. The arm-identity swap experiment was performed

for three sessions. In two sessions the animal experienced 100 trials with a constant reward-probability of (35%) on the gamble-arm

(incl. forced trials). After 50 trials, arm-identity was exchanged between the arms (without physically exchanging the arms). In the third

session reward probability was not constant between the two behavioral blocks (cells were pooled from all three sessions).

In vivo electrophysiology
Tetrodes were lowered into the prelimbic cortex andmoved before each recording day in order to record from new units. Unit signals

were pre-amplified with a head-stage (HS-132A, 2 3 32 channels, Axona Ltd), and amplified 1000X via a 64-channel amplifier. A

64-channel converter computer card (Axona Ltd) was used to digitize at 24 kHz at 16 bit resolution. The signal was then down

sampled offline to 20 kHz. To obtain single units, the signal was band-filtered (0.8 – 5 kHz) and spikeswere defined by detecting signal

amplitudes bigger than 5 SD above the mean. Each potential spike was sampled with 32 data points (1.6 ms) over 0.2 ms sliding

windows and a principal component analysis was used to extract the first three components of the spike waveform (Csicsvari

et al., 1998). KlustaKwik automatic clustering software (http://klustakwik.sourceforge.net/) was used to detect spike waveforms

from putative neurons (Hazan et al., 2006). The clusters obtained were then manually verified by assessing the waveform shape,

the modulation of waveform amplitude across tetrode channels, the temporal autocorrelation (to assess the refractory period of a

single-unit) and cross-correlation (to assess a common refractory period across single-units). The stability of single-units was

confirmed by examining spike features over time.

Anaesthesia experiments
Validation of optogenetic inhibition: The experiments (n = 2 rats, part of the behavioral inactivation experiments) were performed

under Urethane (1.25 g/kg body weight) with additional doses of a ketamine/xylazine mixture (17 and 7 mg/ml, respectively;

0.02 - 0.1 ml). Once the dental cement was removed, optic fibers were slowly removed and custom-made acute opto-drives inserted

into the prelimbic cortex. Drives consisted of 4 tetrodes surrounding a central optic fiber. Tetrodes protruded around 0.6mm from the

optic fiber tip. The acute opto-drive was slowly advanced through the prelimbic cortex (1mm steps) with a stepper motor (Scientifica)
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and neuronal signals were recorded. Once optical effects were apparent, single-unit activity was recorded with simultaneous optical

stimulation as used during the behavioral protocols (see below). Additionally, we performed 50Hz stimulations (280 times, 1ms every

19ms). Signals were transmitted to a RA16AC head-stage (Tucker-Davis Technologies) and to a 16-bit analog-to-digital converter

(Cambridge Electronic Design), amplified through an EXT-16DX system (NPI Electronics) and recorded via Spike2 (Cambridge

Electronic Design). Spike detection and single-unit isolation as described above. Validation experiments to assess the spread of

optogenetic inhibition were performed in two additional animals (part of the behavioral inactivation experiments). Same procedures

were generally applied as above with the difference that original optic fibers were kept in place and anteriorly tetrodes were intro-

duced slowly with a stepper motor in a dorsoventral fashion through cingulate, prelimbic and infralimbic cortex. Recordings were

performed in batches, allowing the brain to adjust at each step and depth was monitored.

Optogenetic experiments
Optogenetic silencing during the gambling task was achieved via a DPSS laser (IkeCool Corporation) generating blue light (473 nm)

which connected to two bilaterally implanted optic fibers through a ferrule-sleeve system (Senko Ltd) with 20-30 mW output power

delivered to the brain tissue for each individual optic fiber. We opted for an approx. 66Hz stimulation (280 times, 1ms stimulation

every 14ms) triggered by the reward sensor on non-rewarded gamble-arm trials (Nor), rewarded gamble-arm trials (RR), rewarded

safe-arm trials (SafeR) or triggered by the home sensor of the home arm (R1). We used the same optical stimulation protocol in the

2-chamber experiment. Here, the animal was placed into a square open maze (90x90x30cm) out of black painted wood. Two panels

segregated the arena into two equally-sized compartments. During 8 minutes of exploration, animals chased pellets randomly deliv-

ered into the box via pellet feeders mounted above. The pellet feeders were activated and delivered at the exact same time to avoid

behavioral biases (every 30 s.). Animals performed at least two consecutive sessions each. In each of the recording session, the laser

stimulus was activated exclusively only on one side of the arena (counterbalanced between recordings) approx. every 15 s. (similar to

the average trial time in the gambling task). The animal’s position was tracked via a red LEDmounted on the optical fiber cable. Two of

those animals were used to confirm activation and inactivation of neuronal populations in the prelimbic cortex during urethane-

induced anesthesia (as described above).

Histology
To confirm the position of the recording sites from freely-moving electrophysiological experiments, rats were then deeply anesthe-

tized with urethane and lesions weremade at the tip of the tetrodes applying a 30 mA unipolar current for 10 s (Stimulus Isolator, World

Precision Instruments). Rats were perfused with saline followed by a 20 min fixation with 4% paraformaldehyde, 15% (v/v) saturated

picric acid. Tetrodes were retracted; the micro-drive and the brain were sequentially extracted. Serial coronal sections were cut at 50

or 70 mm with a vibratome (Leica). Lesions were confirmed on an Olympus BX61 microscope. To detect the expression of ChR2

exclusively in GABAergic neurons, we incubated sections of interest in serum containing mouse anti-ChR2 monoclonal antibody

(1/100, mfd Diagnostics) and vesicular GABA transporter (VGAT, Anti guinea-pig, 1/10000, Frontiers Institute, Japan) in 0.1M Tris-

buffered saline containing, 1% normal horse serum and 0.1% Triton X-100. Sections were next incubated with Alexa488 anti-mouse

(1/10000, Jackson Immuno Research Laboratories) and Cy3 (1/10000, Jackson Immuno Research Laboratories) fluorescent

secondary antibodies. Immuno-histochemical analysis and image acquisition was performed on a confocal microscope (Leica

TCS SP5).

Analysis and statistics
If not stated otherwise alpha is 0.05 and statistical testing was two-tailed each dataset was tested for normality (Kolmogorov-Smirn-

off test). Additional statistical details for respective Figures can be found in Table S3.

Behavioral Analysis
Three pairs of sensors were placed on the maze. One pair indicated the start of the arm, at the beginning of the home arm, and one

pair of sensors were located on each of the goal arms. A crossing of the reward sensors triggered either delivery or withholding of

reward. In addition, sensor signals allowed us to separate the behavior into individual trials. We used the tracking data to detect the

start of the run precisely (crossing of the door) and define the division point as a position along the maze where the first significant

difference (in x/y position) between all trials within a session (t test, p < 0.05) occurred (Sul et al., 2010). This allowed us to reliably sub-

divide each trial into four behaviorally relevant episodes (run1, run2, reward, inter-trial). Run1was defined as the episode between the

home arm sensor activation and the division point. Run2 was defined as the period between the division point and the reward sensor.

The reward episode was defined as the period between the reward sensor activation and the grabbing of the animal. The inter-trial

periodwas defined as the return of the animal (between the grabbing and the return to the home arm sensor). For the calculation of the

firing rate, each trial was subdivided into 30 time-bins (9 for run1, 3 for run2, 9 for reward and 9 for inter-trial) which was based on the

average trial and episode times of the animals. In order to compare firing rates of single trials against each other and across sessions

we opted for a combined spatial and time normalization. Within each episode and trial, the time was normalized for the respective bin

number. We excluded single trials where the total trial time was above 2 standard deviations of the mean. The mean bin time was

485.6ms ± 139.3 (mean ±Stdev), resulting in an average trial time of 14.5 s. These 30 time-binswere subsequently used in all analysis.

We focused our analysis exclusively on free-choice trials. To control formotoric confounds during our analysis of electrophysiological
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neuronal signals, we calculated maze trajectory (trk) for each arm and session (i) and calculated the bin-by-bin (b) variation to the

mean trajectory values (mtrk) of the respective arm to allow direct comparison to the variance in firing rate during the same bins.

Vbi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmtrkbix � trkbixÞ2 +

�
mtrkbiy � trkbiy

�2q
In 20 sessions where he had access to 3LED tracking we calculated the relative change in angular heading to evaluate head-move-

ment speed. In addition, we extracted head-direction (in degrees) for each time point and calculated mean-directional heading for

each time-bin.

Behavioral modeling
A Rescorla-Wagner based reinforcement learning algorithm was applied to model the internal variables related to the decision pro-

cess (Sutton and Barto, 1998) The subjective values of outcomes, called action values, are updated at each trial according to the

difference between the expected and the actual reward in the following way:

If a rat goes to the safe-arm:

Qsðt+ 1Þ=QsðtÞ+aðRðtÞ �QsðtÞÞ
and

Qgðt+ 1Þ=QgðtÞ
where QsðtÞ is the action value of the safe-arm in trial t, QgðtÞ is the action value of the gamble-arm in trial t, RðtÞis the reward that the

rat received in trial t (1 pellet for safe-arm and 0 or 4 pellets for the gamble-arm) and �a is the learning parameter, indicating the amount

of reward feedback used by the animals in their choice patterns. Alpha values close to 0 would indicate a minimal use of the reward

feedback for action value updating. High alpha values indicate a high impact of the reward feedback on the animal’s upcoming

choice. The equation is analogous if the rat chooses a gamble-arm.

Initially, we assume that the rat does not have any preferences of the arms at the start of the block, so we defineQsðtÞ andQgðtÞ to
be zero for t = 0. Actions are chosen according to the soft-max selection criterion.

The probability of the rat going to the gamble-arm in trial t is:

PgðtÞ= 1

1+ e�bðQgðtÞ�QsðtÞÞ
where b is the inverse temperature parameter that defines the degree of exploration in the action selection.When b is close to 0, the

contribution of the difference of the action values in the equation becomes smaller and the resulting behavior is more stochastic and

explorative. When b is increased, the difference in selection probability becomes bigger and the animal’s behavior is more exploit-

ative. Assuming that the learning rate and the inverse temperature are not inherent personality features, but rather depend on learning

state and motivation, they may change from session to session for each rat. Parameters a and b were estimated for each session

separately using maximum likelihood estimation. We conducted a grid search for parameters a between 0 and 1 and for b between

0 and 50. For each point of the grid we calculated the likelihood function fðx;a;bÞ, representing the likelihood that the we observe data

x with a particular set of parameters and is defined as: fðx;a;bÞ = QtPaðtÞðtÞ;where aðtÞ is action in trial t.

We optimized the parameters by maximizing the likelihood function of the observed and predicted choices of a rat in each session.

We used a cross-validation method for time series to estimate the predictive strength of the model. We train the data on

x1; x2; x3;.xk data points and use the estimated parameters to predict the choice in the ðk + 1Þ-th trial. We performed this for

the last 30 choice trials of each session and count the percentage of successful predictions (Table S1). To be able to compare

different models we calculated the corrected Akaike Information Criterion as follows:

AICc = � 2 � ln
�
max
a;b

ðfðx; a; bÞÞ
�
+ 2 � K;

where K is the number of parameters used in the model (Burnham and Anderson, 2002).

In the first reinforcement model we included information from forced trials and is defined as follows:

PgðtÞ=

8>>>><
>>>>:

1

1+ e�bðQgðtÞ�QsðtÞÞ; if t is a free choice trial

1; if t is a forced gamble trial

0; if t is a forced safe trial:

In the second reinforcement learning model, we included the reward ratio in the maximum likelihood estimation, modeling the

perception of the higher reward on the gambling arm compared to the safe-arm. A logistic regression model (Cox, 1958) and a

Win-stay lose-shift model (WSLS) were used as reference points for the reinforcement learning models’ performance. The WSLS

model predicts that the rat would pick the same arm choice after a choice was rewarded, and change its choice after an unrewarded
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trial. The logistic regression model is a discrete choice model that estimates probabilities of choosing one option or the other as pre-

dicted by past choices and past choice outcomes.

By assigning choice variables to be 1 for gamble and 0 for safe trials, defining 1 to k trials prior to trial t as C1ðtÞ;.;CkðtÞ, and choice

outcomes of 1 to k trials prior to trial t as R1ðtÞ;.;RkðtÞ, we can formulate the probability of going to the gamble-arm as

PgðtÞ= 1

1+ e�ðP ciCiðtÞ+ riRiðtÞÞ ;

where c1;.; ck and r1;.; rk are regression coefficients. The regression coefficients were estimated using the built-in MATLAB

function mnrfit, based on maximum likelihood estimation. We performed the estimation for each session separately and evaluated

the prediction accuracy for the current choice by incorporating choice and reward outcomes of up to 9 previous trials. In order to test

whether a learning model with an adjustable learning rate would provide us significantly better prediction accuracy, we tested the K1

algorithm of the dynamic learning rate model described by Sutton (1992). Parameter estimations were performed via the built-in

MATLAB function fmincon. We used a cross-validation technique as described above to obtain the number of successful predictions

for each group of variables. We use the Akaike criterion to compare the different models for each session. Both the second reinforce-

ment learning model as well as the dynamic learning rate model performed similarly good and significantly better than the remaining

models (Table S1). We opted for the reinforcement learningmodel 2 in favor over the dynamic learning rate model as the latter did not

significantly improve the performance. Importantly, results of choice-predicting cells were consistent for both models (see

Figure S5I).

Expected Value Model
In order to see how an agent with perfect memory would act we fit an expected value model.

Themodel assumes that the rats are aware that the safe arm always brings 1 pellet and have therefore set the expected value of the

safe arm in, EVsafeðtÞ, to be 1, regardless of trial t. The expected value of the gamble-arm at trial t is defined as

EVgambleðtÞ=pgambleðtÞ � 4r;

where pgamble(t) is the proportion of positive outcomes following a gamble-arm choice. In the EVmodel we assume that the animals

are aware of the block structure and reset the history of outcomes at the start of each block. The parameter r defines the curvature of

the value function (Tversky and Kahneman, 1992) and determines the risk preference of the rat. Higher r values indicate a higher risk-

seeking prevalence of the animal’s choice behavior.

The expected values are transformed into probabilities with the same choice model we use in the reinforcement learning models.

We define the probability of choosing the gamble-arm on trial t as:

PgambleðtÞ= 1

1+ e�bðEVgambleðtÞ�EVsafeðtÞÞ ;

where b represents the inverse temperature parameter as in other models.

The parameters b and r are estimated using the maximum likelihood estimation method, regularized with gamma priors on b

(Gamma (4.83, 0.73); Gershman, 2016) and weakly informative normal priors on r (N(1, 0.3)). Disadvantageous choices were defined

as any gamble-arm choice below an EV of 1 and any safe-arm choice above an EV of 1.

Multiple regression analysis
A semi-automated multi-regression analysis for each time-bin and for each cell was calculated estimate the correlation between the

firing rate of the cells and the behavioral variables of reward, goal arm and choice evidence (Figure 2B). To check whether the vari-

ables contribute to the firing rate variance of our recorded neurons we used the following model:

FRiðtÞ= b0 + b1 � AðtÞ+ b2 � RðtÞ+ b3 � CEðtÞ+ 3ðtÞ;
where FRiðtÞ is the firing rate in trial t at each certain time-bin i, AðtÞ is the chosen goal arm, RðtÞ is the reward in the gamble trials, CE

is the choice- evidence denoted as the probability value to choose the gamble-arm, 3ðtÞ is the error term and b0, b1, b2, b3, are the

regression coefficients. We used a cross validation (CV) to select the most appropriate subset of variables for the model (Arlot and

Celisse, 2010). For each subset of the k variables we found thematrix of coefficients â that solves the regression equation and calcu-

lated the cross validation statistic (Ecv) in the following way:

Ecv =
1

ntrials

�
Xn
i= 1

�
ei

1� hi

�2

;

where ntrials is the number of trials and hi are the diagonal terms of thematrix H = âðâ0
âÞ�1â

0
. The subset of variables with the small-

est CV was then used in the final model together. Once the variables have been selected we included all the possible interactions in

the model and used only the ones that improve the CV statistic. The variables and interactions chosen were then used in the final

model to estimate the regression coefficients and p values. We plot the fractions of neurons with firing patterns that significantly
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correlate with the arm-related variable, reward variable and the choice evidence variable (Figure 2B). A neuron was only counted if

three consecutive time bins were significantly correlated (p < 0.05). Thus No-reward activated cells had to demonstrate a significant

correlation with the absence of reward on the gamble-arm for three consecutive time bins (on average 1350 ms) during the reward

episode.

Demixed principal component analysis
In order to confirm and validate our data and specifically observe the contribution of the task parameters on the neuronal firing ratewe

opted for a demixed principal component approach (DPCA) (Kobak et al., 2016). Standard principal component analysis finds the

optimal orthogonal components which explain most of the variance in the data. However, these components are a mixture of the

task variables and, even though the variability of the data is highly explained, this explanation does not relate well to the initial pa-

rameters. The DPCA finds the components which capture the maximum amount of variance in the data while maintaining the task

parameters as segregated as possible. In general, we followed the procedure presented by Kobak et al., 2016 for sequentially re-

corded data and used the provided MATLAB scripts to analyze the dataset (https://github.com/machenslab/dPCA). The firing rates

per cell and time bins for all gamble-arm trials were exported into the respective multi-dimensional input matrices. We defined the

three choice evidence periods as stimulus variables and reward occurrence on the gamble-arm as the decision variable. Only cells

with a firing rate of less than 50Hz were accepted. A minimum of 2 trials for each combination of variables was required for a session

to be accepted. Specifically two rewarded gamble-arm trials were unlikely to occur when choice evidence for a gamble was low.

Hence, 380 neurons were used as an input. We present the demixed principal component analysis with regularization and used

cross-validation tomeasure time-dependent classification accuracy and a shuffling procedure (100x) to assess whether it was signif-

icantly above chance same as in20 to establish the significance of individual components (Figure 2A).

Elastic-net regularization and general linear model prediction
In order to predict future choices (t+1) based on the firing rate of the current trial (t) we used the trial averaged firing rate of cells as

predictors and future choices (t+1) as the response variable. If not stated otherwise, trial averaged firing rates were taken into account

for the predictionmodels. Either we tested all non-rewarded trials (t) and askedwhich arm the animal will choose in the future trial (t+1)

(Figures 4, 5, and S5) or we tested any trial to assess future choice (Figure S3A–S3C). On average, 22.3 neurons were successfully

isolated in each recording session. Only sessions with a sufficiently high number of no-reward trials (at least 20 in total, and a min-

imum of 5 trials per condition) and at least 3 no-reward activated cells present were taken into account. This reduced the numbers of

sessions tested for choice prediction after non-rewarded trials to 37 sessions (out of 45). For those 37, approx. 10.5 neurons per ses-

sion were identified as no-reward activated cells and those sessions included on average 30.5 no-reward trials (median: 29). To

reduce the number of features we applied an elastic-net regularization with a leave-one-out cross-validation to identify themost rele-

vant predictors (Lasso/Elastic-net MATLAB in-built function based on (Zou and Hastie, 2005; Tibshirani, 2011; Hastie et al., 2011):

min
b0b

 
1

2N

XN
i =1

�
yi � b0 � xTi b

�2
+ lPaðbÞ

!

where

PaðbÞ= ð1� aÞ
2

kb k 2
2 +akb k 1 =

Xp
j =1

�ð1� aÞ
2

b2
j +a

��bj

�� �

and N is the number of observations; yi the response of the observation i. xi is a vector of p values at the observation i. l is a positive

regularization parameter. The parameters b0 and b represent scalar and p-vector respectively. As l increases, the number of nonzero

elements of b decreases. The Elastic-net regularization sets more coefficients to zero with an increasing penalty term. We interpolate

between the L1-norm of b and the squared L2 of b via the penalty term Pa(b). Although, minimal differences (in cells selected) could be

observed when different alpha (a) values (between 0 and 1, data not shown) were tested, the data presented here are based on an a

of 0.2.

Once features were selected as input predictors (Xi) by the regularization for each session separately, we tested those on a general

linear prediction model. When we tested for all future choices, 10% of the trials were withheld for the test-data. In all other instances,

one trial was kept as test-data, and the remaining trials (training data) were used to generate a model with a leave-one-out cross-

validation. The resulting model was tested on the remaining unseen test-data.

m= b0 +
X

biXi + ε

Whereas b0 is the intercept and ε is an error term. The procedure was repeated 30 times (average number of non-rewarded trials).

The resulting averagemodel accuracy per session was presented as prediction accuracy (Figures 4B, inlet, and S3A). Receiver oper-

ating characteristics were calculated based on the validation sets for each session (Figures 4B, S2F, S3B, and S5L). The accuracy of

the prediction could not be attributed to a behaviorally increased likelihood of change after a non-rewarded trial. In fact, in 40% of
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non-rewarded trials animals did change their choice on the next trial. Regression coefficients presented in all figures are the averaged

model coefficients per cell for each model repetition (Figures 4D and S3C).

In order to investigate change-predicting cells, which are reliable predictors across all choice evidence periods, and to negate the

effects of negative feedback scaling we used the first derivative of the firing rate. The mean firing rate of trial t-1 (excluding the reward

episode) was subtracted from the firing rate during the reward episode of trial t and used as input predictor for future choice in trial

(t+1) based on the firing rate within that episode. The same prediction model was then used as described above.

All calculations were made in MATLAB� (version 2016 and 2017a) and statistical analysis was performed in either MATLAB� or

with SigmaPlot� (version 13).

Multiple regression analysis for control of task variable influence over firing of choice-predicting cells
This method allowed us to test whether choice-predicting signals persist to be identified once we control for variance in a range of

task-parameters. Only those sessions were tested where angular head-directional data was available (sessions recorded with three

tracking LEDs). Formula for regression:

FRiðtÞ= b0 + b1 �QgðtÞ+ b2 � RPEðtÞ+ b3 � CEðtÞ+ b4 � AngðtÞ+ b5 � TrkðtÞ+ 3ðtÞ;
Where â are the respective coefficients, and FR the firing rate in trial t; CE: choice-evidence, RPE: Reward prediction error; Ang:

changes in head-direction; Trk: changes in deviation from mean tracking and Qg is the modeled action value of the Gamble arm for

trial t. Instead of using firing rates as inputs into our elastic-net regression (as above) we use here the residuals for each individual

neuron for the regression.

DATA AND SOFTWARE AVAILABILITY

The data and code that support the findings of this study are available from the corresponding authors upon request.
e7 Neuron 101, 1–13.e1–e7, January 2, 2019



Neuron, Volume 101
Supplemental Information
Activity of Prefrontal Neurons Predict

Future Choices during Gambling

Johannes Passecker, Nace Mikus, Hugo Malagon-Vina, Philip Anner, Jordane
Dimidschstein, Gordon Fishell, Georg Dorffner, and Thomas Klausberger



 

 

Supplementary Figures/Tables: 

 

 

Figure S1 related to Figure 1.: Detailed behavioural analysis of animals´ performance 

during the gambling task (A) Choice distributions during individual behavioural sessions 

(lines) for each animal (colors) according to blocks of trials with 12%, 25%, or 75% reward 

occurrence on the gamble arm and categorised into four behavioural patterns. This first graph 

shows sessions with optimal behavioural choices, the other three plots indicate sessions with 

seemingly suboptimal choice distributions. Note, block-based visualisation considers averaged 

but not necessarily experienced reward probabilities because of the stochastic reward 

distribution. (B) Same data as in a, but here the choice distributions are shown according to the 

choice evidence for gamble arm calculated by the reinforcement learning model. Note that now 

87% of sessions fall into category 1 with optimal choice selection due to integration of actual 



 

 

reward outcome and subjective goal valuations of the model. (C) Gamble arm choices 

according to choice evidence for gamble arm for four different rats (R#1-4, total of 45 

sessions); *p<0.05; ***p<0.001, One-way Anova with bonferroni correction (R#1: F2=68.062, 

p<0.001; tlow vs. high=11.665, p<0.001; tambi vs. high=5.925, p<0.001; tlow vs. ambi=5.851, p<0.001; 

n=14 (3 missing);R#2: F2=49.803, p<0.001; tlow vs. high=9.911, p<0.001; tambi vs. high=5.794, 

p<0.001; tlow vs. ambi=4.344, p=0.001; all, n=7;R#3: F2=31.278, p<0.001; tlow vs. high=7.906, 

p<0.001; tambi vs. high=3.566, p=0.008; tlow vs. ambi=4.865, p<0.001, n=7;R#4: F2=66.803, p<0.001; 

tlow vs. high=11.351, p<0.001; tambi vs. high=7.488, p<0.001; tlow vs. ambi=3.977, p<0.001; n=17;). (D) 

Across entire sessions, animals maximise reward indicated by the average number of reward 

units per trial (mean of 1.57) for all sessions (n=45, 4 rats) closely matches ideal outcome (red 

dotted line, 1.66 units/trial). Blue line: best fit exponential function (r2=0.93). (E) Individual 

animals do not differ in their number of disadvantageous choices (defined as a gamble arm-

choice when expected reward value (EV) for the gamble-arm is lower than 1; and as a safe-

arm choice when EV is higher than 1) across animals (One-way ANOVA: F3=1.497, p=0.228; 

n=45, 4 rats). But each animal shows some variation across sessions. (F) Correlation between 

choice evidence and speed-per-trial for each session does not indicate motivational biases. 35 

sessions were not significantly correlated, two were positively and eight were negatively 

correlated (p<0.05, dashed line). (G) We segregated behavioural data into periods of low, 

ambiguous and high choice evidence for gamble and tested for possible correlations with 

running speed. 95 out of 123 comparisons were not significantly correlated, in a minority of 

sessions, speed correlated with choice evidence each without a trend towards a specific in- or 

decrease in speed when choice evidence increases or decreases (Kruskal Wallis-H test with 

Dunn’s post-hoc comparison, alpha=0.0167). 

 



 

 

 

Figure S2 related to Figure 3.: Diversity in firing rate modulation among no-reward 

activated neurons. (A) Firing rate of three cells with increased firing rate during non-rewarded 

gamble-arm trials independent of choice-evidence. (B) Three cells with increased firing rate 

for unrewarded gamble arm trials dependent on choice-evidence. The first and third cell depicts 

choice-evidence modulation across several trial episodes (e.g. Run1, Reward, IT) whereas the 

second example is only choice-evidence modulated in the reward episode (C) Another three 

cells with firing rate differentiation during the reward episode between unrewarded and 

rewarded gamble-arm trials despite a lack of peak firing during the reward episode. (D) No-

reward activated cells were recorded and identified in all four animals. (E) Multiple linear 

regression (as in Figure 2B, incl. choice evidence and arm as variables) presents high 

correlation to current reward occurrence and minimal correlation to past rewards. (F) ROC 

statistics for reward prediction on the gamble arm for each individual trial episode (reward: 

90.97%±1,6; IT: 77.68%±2.61, Run1: 65.38%±3.11, Run2: 67%±1.89% as mean±SEM; 



 

 

Correlation with pre-reward episodes mainly due to co-correlation with choice-evidence (note: 

higher number of unrewarded gamble-trials during low choice-evidence than during high 

choice-evidence). 

  



 

 

 

Figure S3 related to Figure 4: Neuronal firing in the prelimbic cortex predicts future 

choices. (A) All recorded neurons or no-reward activated cells as input to a prediction model 

result in significant predictions for all future choices; the complete set of neurons (mean: 77.8% 

± 1.3% SEM) performs better than the no-reward activated population (mean: 75%±1.3% 

SEM). Paired t-test: t36 =-3,461 p=0.0014; (B) Receiver operating curve for future choice 

prediction of all recorded neurons (black) or no-reward activated cells (blue) as feature 

selection input for the prediction of all future choices (ROC curves as mean curve ±SEM, 

D=0.4058, p<0.001; nnor=77, nother=74). (C) No-reward activated cells (blue) significantly 

differ in their elastic-net regression coefficient from the remaining cell population (red) and 

depict mainly negative coefficients. Wilcoxon rank-sum test Z=4.462, p<0.001; nnor=69, 

nother=85.  

 



 

 

 

Figure S4 related to Figure 4 and Figure 5: Variability of trajectories and head-direction 

during task performance. (A) During the reward episode a significant difference between 

trajectories is only observed for unrewarded versus rewarded gamble-arm trials, (left: p=1.93e-

36,Z1830/1636=12.607). It is not observed for trajectories of non-rewarded gamble-arm trials 

(middle: p=0.097, Z1016/732=1.662) or safe-arm (right, p=0.758, Z=-0.301) trials when split 

based on future choice in the subsequent trial (graph: mean± SEM, trials from 45 sessions & 4 

rats, Rank-Sum test adj. for multiple comparisons at alpha of 0.0167). (B) During the reward 

period, changes in head-direction were not different for any of the three scenarios shown (Rank 

Sum test adjust. for multiple comparisons at alpha of 0.0167; reward episode from left to right: 

p=0.526, Z815/717=-1.078; p=0.032, Z340/247=-2.144; p=0.700, Z551/320=0.3857; trials from 

20sessions in which 3LEDs where used for tracking, 4 rats. (C) Probability distribution plots 

of head-direction with angular 10° bins during the reward episode for the respective trial 

conditions. Angular head-direction during the reward episode does not differ dependent on 

whether the animal will choose the same or the opposite arm in the subsequent trial (Wilcoxon 

Signed rank test (as binned data does not cross 0/360° in any trial) from left to right: p=0.298, 



 

 

Z98=-1.04; p=0.053, Z107=-1.93; p=0.265, Z107=-1.116, p=0.074, Z73=-1.79; n=20 sessions in 

which 3LEDs where used for tracking, 4 rats). For A-C statistical visualisations are only shown 

for the relevant reward episode. 

 



 

 

 

Figure S5 related to Figure 5: Prediction of future decisions by the firing rate of choice-

predicting cells during evaluation of negative outcomes. (A) Four choice-predicting cells 



 

 

present distinct firing rate increases dependent on the subsequent choice on the next trial. (B) 

Firing histograms of another four cells during periods with the highest number of choice 

changes (ambiguous choice evidence) depict predictive firing rate increases restricted to the 

reward episode. (C) Z-scored (per trial) firing rates of choice-predicting cells in all trials split 

dependent on the previous trial (t-1 – graphs) and split for the choice in the following trial (t+1 

-colors). Predictive firing rate remains, independent of previous trial choice or reward outcome 

but is dependent on future choice. (t-1 rewarded gamble: K-S test: p=1.27e-7, (n=253/495); t-1 safe-arm: 

K-S test: p=1.17e-6, (n=600/119); t-1 unrewarded gamble: K-S test: p=4.29e-7, (n=474/282);  (D-E) 

Same analysis of firing rates of different consecutive trial scenarios as in Figure 5E (there 

during the reward episode) does not present significant increases for the intertrial interval and 

for the run1 (E) episode. In both cases the 2-way RM ANOVA is not significant for group or 

time (2-way repeated measure ANOVA with parametric post-hoc comparison at alpha 0.0167 

for the intertrial episode (D): left scenario: F2, time=0.55, p=0.579; F1, group=0.35, p=0.556; F2, 

interaction=9.52, p=0.0001; (n=56/79); middle scenario: F2, time=0.89, p=0.411; F1, group=0.14, 

p=0.711; F2, interaction=0.49, p=0.61; (n=77/47); right scenario: F2, time=0.47, p=0.624; F1, 

group=0.78, p=0.38; F2, interaction=0.87, p=0.419 (n=56/66); run1 episode (E): left scenario: F2, 

time=1.99, p=0.139; F1, group=0.22, p=0.643; F2, interaction=5.73, p=0.004; (n=56/79); middle 

scenario: F2, time=0.26, p=0.774; F1, group=0.1, p=0.754; F2, interaction=0.77, p=0.467; (n=77/47); 

right scenario: F2, time=1.27, p=0.284; F1, group=0.82, p=0.367; F2, interaction=0.57, p=0.566 

(n=56/66);) mean ± standard deviation. (F) Normalised firing rate of choice-predicting cells 

retain predictive power during trials in which the expected reward value (EV) is between 0.5 

and 1.5. During those trials animals choose the safe and gamble arm roughly 50% of the time 

(See Figure 1C), Z=-4.2664, p=1.987e-05, n=60; (G) Predictive firing rate dissociation remains 

also during trials in which the reward probability of the gamble arm is between 33% to 66% 

measured as objective prior reward occurrence (Z=-4.929, p=8.27e-07, n=49). (H) Differences 

in the magnitude of the reward prediction error (note: as all tested trials are non-rewarded trials, 

the RPE is always the same direction) does not explain the increase in firing rate of choice-

predicting cells during the reward episode (left panel: higher RPEs>0.25: Z=-5.1742, p=2.23e-

07, n=51; right panel - low RPEs<0.25: Z=-4.872, p=1.11e-05, n=54). (I) Firing rates of choice-

predicting cells during different choice evidence categories based on the alternative dynamic 

learning rate model also depicts stable future choice prediction (low: Z=-2.893, p=0.004 

(n=25); ambiguous: Z=-4.481, p<0.001 (n=67); high: Z=-6.048, p<0.001; n=65). For F, G, H, 

I Wilcoxon-Signed rank test alpha at 0.00166 - bonferroni corrected for multiple testing, n 

numbers vary slightly as sessions had to include at least two trials for each condition. (J) 



 

 

Correlation between the firing rate of choice-predicting cells and choice evidence values across 

all non-rewarded gamble-arm trials during periods of ambiguous choice evidence does not 

explain the difference in firing rate. Grey indicates significant correlations with alpha <0.05. 

(K) Pie charts representing the percentage of cells with significantly correlated firing rate with 

task-variables during the reward episodes (links to Figure 5D). (L) Removing choice-predicting 

cells from the population of no-reward activated cells as input for a prediction model, reduces 

model performance. Blue, all no-reward activated cells as input for feature selection; orange, 

choice-predicting cells; gold, no-reward activated neurons without choice-predicting cells. The 

dotted line represents chance level. All choices following non-rewarded gamble-arm trials were 

tested. n=34 sessions. 

 

  



 

 

 

Figure S6 related to Figure 6: During the encounter of reward on the safe arm, the firing 

of another subset of prelimbic neurons indicates the upcoming choice of the animal (A) 

Four neurons which increase their firing rate during the reward episode of safe-arm runs before 

a subsequent goal-arm choice in the following trial. (B) Another four cells during periods with 

the highest number of choice changes (ambiguous choice evidence) depict predictive firing rate 

increases restricted to the reward episode. mean±SEM;  

  



 

 

 

Figure S7 related to Figure 3 and Figure 5: Firing patterns of choice-predicting cells and 

no-reward activated cells remain stable after swapping gamble and safe arm within a 

behavioural session (A-C) Individual neurons recorded during three control sessions in which, 

halfway through the session, the arm identity was swapped between the goal arms (the Gamble-

arm became the Safe-arm and vice versa). Six neurons are shown which retain their task-

variable dependent firing rate differentiation before and after the swap indicating limited spatial 

or local olfactory cue correlations. (D, E) Only a minor fraction of the recorded neurons 

significantly change their firing rate based on the major task variables following an arm-

identity swap. Pie-charts indicate the percentage of cells that significantly change their 

correlation to a task variable (blue: goal-arm; green: reward). (F) Alternative analysis and 

visualisation of the neuronal population confirms strong coherence in firing pattern across trials 

for different trial conditions. Sorted (per condition) heatmap plots of the normalised firing rate 

before and after the arm-identity swap (only z-values within -1.5 and 3 were shown for 



 

 

visualisation purposes). r values present correlations before and after arm-identity swap and 

were compared (Fisher’s r to z-transformation) against the correlations between the first and 

second half of the recording before the arm swap (when arm identity remained stable 

throughout; respective left side of the heatmaps; r values for control condition and p values of 

r-z transform correlation comparison: rctr-rewarded gamble-arm =0.5726, p58=0.5838, rctr-safe 

arm=0.6537 p58=0.3464, rctr-non-rewarded =0.549 p58=0.939, for D-F n=59 recorded units, 3 

sessions). 

  



 

 

 

Figure S8 related to Figure 7: Optical Inactivation of prelimbic cortex. (A) During 

anaesthesia, neurons were recorded via tetrodes that were introduced progressively deeper 

through the medial prefrontal cortex in two animals which were part of the behavioural 

optogenetic experiments. While keeping track of the depth (motorized stepper-motor) the same 

optogenetic stimulation protocol (as during behavior) was applied through the originally 

implanted optic fibres to measure and estimate the extent of the optogenetic inactivation. (B) 

Five recordings at progressively deeper locations with an inactivation effect at the first three 

recording sites but not in the deeper two sites (3 or 4 co-recorded neurons per site). (C) PSTH 

of firing of a putative interneuron (same cell as the last cell in example 3 of B) aligned to optic 

stimulus time and an unaffected putative interneuron recorded deeper (second last cell of 



 

 

example 5 in B). (D) Summary overview over all recorded cells (n=195 neurons from 2 animals 

(88/107) shows location-specific inactivation effects over a span of approx. 1.2 mm. Units are 

sorted in batches based on recorded depths and color represents firing rate changes. A 

stimulation index value of 0.5 (green) indicates minimal changes between stimulation periods 

and control periods, whereas 1 indicates maximal increase (for putatively activated 

interneurons) and 0 indicates maximal decrease of firing (for putatively inactivated principal 

cells). (E) Optical inactivations during no-reward experience decreased the number of arm 

changes (One-Way ANOVA, Tukey post-hoc, F4=3.281, p=0.004) during the gambling task 

compared to controls (p=0.004, Q=55.260). (F) The number of gamble arm choices following 

safe-arm runs was not significantly changing in any of the inactivation protocols compared to 

controls (One-Way ANOVA, F4=2.315, p=0.067) (G) Modelled parameters reflect behavioural 

changes. Alpha values of the RL Model, indicating the use of reward outcome on the gamble 

arm, decreased significantly for the no-reward inactivation compared to control (Kruskal 

Wallis with Dunn’s post-hoc: H4=11.011, p=0.026; pctr vs. nor=0.037, Qctr vs. nor=2.90). (H) In a 

similar fashion the ρ – parameter of the expected value model decreased significantly for the 

no-reward inactivation compared to controls (Kruskal Wallis with Dunn’s post-hoc : 

H4=20.883, p<0.001; pctr vs. nor=0.005, Qctr vs. nor=3.701). For E-H same n as in Figure7, 

normality tested before running the parametric or nonparametric version. (I) An animal 

randomly explored a 2-chamber box for food pellets arbitrarily scatted in both chambers with 

equal likelihood. In one of the two compartments the animal received the same optical 

stimulation of GABAergic interneurons and accompanied silencing of prelimbic pyramidal 

cells as described in Figure 4 once every 13-17 sec. After 8 min the stimulation occurred in the 

other compartment of the box for another 8 min. In both cases the rat did not spend a 

significantly different amount of time in any of the two compartments; Mann-Whitney Rank 

Sum test, left: T=858, p=0,453, n=26 and 35 respectively; right: T=760, p=0,198; (J) 

Cumulative data from 4 rats. Left: Total time spent did not differ between control compartment 

and stimulation compartment. (Mann-Whitney Rank Sum test: t18=0.508, p=0.617; ncontrol=10 

and nstim=10). Duration of visits for each compartment did not significantly differ between 

control or stimulation area. Each visit had to be at least 1 sec. long and had to be separated by 

a crossing into the opposite area. (ncontrol=229 and nstim=258, Mann-Whitney Rank Sum test: 

p=0.341). (K) Bilateral CHR2 expression (in red) almost exclusively restricted to the prelimbic 

cortex, with optic fibre tracks visible in black for both hemispheres (dashed lines indicate 

borders between medial prefrontal regions; ACC: Anterior cingulate cortex; PL: prelimbic 

cortex, IL Infralimbic cortex; based on Paxinos et al. 2007, at bregma -3mm.)  



 

 

 

 AIC Alpha Beta Reward ratio Successful 

prediction (%) 

Expected Value 

Model 

124.92±5.05 1.04±0.05 

(rho) 

0.83±0.17 NA 71.11±2.37 

Win Stay  

Lose Shift Model 

NA NA NA NA 60.52±2.60 

Logistic Model 130.80±4.21 NA NA NA 78.48±2.34 

RL model 1 100.12±3.79 0.17±0.03 7.78±0.59 4 80.37±2.66 

RL model 2 94.07±3.39 0.12±0.01 8.69±0.63 3.12±0.12 81.70±2.28 

DLR Model 90,79±3.48 NA 12.13±1.95 2.88±0.13 80.60±0.99 

Table S1 related to STAR Methods and Results: Behavioural model comparison. RL: 

reinforcement learning model; DLR: dynamic learning rate model; NA: not applicable; AIC: 

Akaike information criterion 
 

 

Table S2 related to STAR Methods: Stereotaxic coordinates for all experiments 

  

Procedure Targeted brain area Antero-posterior Medio-lateral Dorso-ventral

Optic fiber implantation mPFC (bilateral) 3 0.6 -2.5

Tetrodes implantation mPFC (right hem.) 4 to 2.7 0.4-0.8 Start: -2 to -2.5

Virus injection 1st track mPFC (bilateral) 2.8 0.7 -2.5 to -3.5

Virus injection 2nd track mPFC (bilateral) 3.3 0.5 -2.2 to -3.2

Coordinates given in millimeters and referenced to bregma



 

 

 
Figure Statistical 

Test 

Post-Hoc Test: N numbers Comment 

1D 
One-Way ANOVA 

F2=50.529, p<0.001 

12.5% vs. 75%: q=14.210 

p<0.001; 12.5% vs. 25%: 

q=6.668 p<0.001; 25% vs. 75% 

periods: q=7.337 p<0.001 

45 sessions for 

all conditions 

Student-

Newman Keuls 

(post-hoc test) 

1E 
One-Way ANOVA 

F2=178.703, p<0.001 

low vs. high: q=26.590 

p<0.001; low vs. ambiguous: 

q=15.257, p<0.001; ambiguous 

vs. high: q=11.888 p<0.001 

namb=45, nlow 

=39, nhigh=45 

sessions 

1F 
One-Way ANOVA 

F2=23.511, p<0.001 

low vs. high: q=23.140, 

p=0.026; low vs. ambiguous: 

q=26.058, p<0.001; ambiguous 

vs. high: q=39.554 p<0.001 

namb=45, nlow 

=39, nhigh=45 

sessions 

4A, 

5A,D,G 

6A,B 

S5A,B,F,I 

Wilcoxon-Signed rank test 

on avg. firing rate during the 

episodes between conditions 

alpha was set at 0.00166 

(bonferroni corrected) to 

account for the multiple testing 

of time bins. 

Variable see 

main Figure 

 

5D 
Reward episode: Z=-3.37410 

Other episodes: non-significant 

n=20 (all sessions where angular 

head direction information was 

available – with 3 LEDs) 

5E (left) 

2-way RM ANOVA:  

F2, time=18.28, p<0.0001; F1, 

group=4.8, p=0.03; F2, interaction=4.28, 

p=0.0152; 

1st trial: p=0.332 ; 2nd trial: p= 

0.622;3rd trial: p=0.002;  

n=56/79 units 

parametric post-

hoc comparison 

at alpha 0.0167 

(multiple 

observations) 

 

5E 

(middle) 

2-way RM ANOVA:  

F2, time=31.6, p<0.0001; F1, 

group=9.75, p=0.003; F2, 

interaction=4.34, p=0.0147; 

1st trial: p=0.1489 ; 2nd trial: 

p= 0.1156; 3rd trial: p=4.07e-4;  

n=77/47 units 

5E (right) 

2-way RM ANOVA:  

F2, time=7.18, p=0.001; F1, 

group=5.34, p=0.023; F2, 

interaction=0.65, p=0.522; 

1st trial: p=0.056 ; 2nd trial: p= 

0.138; 3rd trial: p=0.015;  

n=56/66 units 

5F 

Choice- evidence of 0.5 depicts no model evidence towards any favoured choice. Successful trial by trial 

predictions for each model is separated for the respective choice- evidence variable for the respective 

trial. Choice-predicting cells are based on the same elastic-net regression feature selection as in Figure 

5A,C,E,G and uses the selected cells for GLM prediction (actual firing rate) of future choice after non-

rewarded trials; dotted line represents chance level; elastic-net input: n=402 GLM input: n=151; 

7B 

right panel; firing rates of non-stimulus phases were compared to 50 and 66.6 Hz stimulation periods. 

Individual cells had to significantly de- or increase the firing rate (Mann-Whitney U-test, p<0.05). n=153, 

only recording sessions with a clear optical stimulation effect on the local field potential were taken into 

account. 

7E 

 

One-Way ANOVA 

Tukey post-hoc comparison 

 

pNor vs. Ctr=<0.001, QNor vs. Ctr=57.280; pNor vs. RR<0.001, QNor vs. 

RR=56.195; pNor vs. Run1=0.002, QNor vs. Run1=55.660; pNor vs. SafeR=0.089, 

n.s., QNor vs. SafeR=53.627; 

7F 

pNor vs. Ctr=<0.001, QNor vs. Ctr=57.226; pNor vs. RR=0.013, QNor vs. 

RR=54.676; pNor vs. SafeR=0.052, n.s., QNor vs. Run1=53.952; pNor vs. 

Run1=0.194, n.s., QNor vs. SafeR=53.108; 

7G 

pNor vs. Ctr=<0.001, QNor vs. Ctr=56.135; pNor vs. RR=0.001, QNor vs. 

RR=55.718; pNor vs. Run1<0.001, QNor vs. Run1=56.056; pNor vs. SafeR=0.240, 

n.s., QNor vs. SafeR=52.950; 

Table S3 related to Main Figures and STAR Methods: Additional statistical details  
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